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Photon Interaction with Matter

e Photons are neutral particles which cannot
e detected on their own

e Detection arises from an interaction with
matter, such as an electron.

e Three main photon interactions:
e Photoelectric Effect

e Compton Scattering
e Pair Production




Photoelectric Effect

e The dominant effect in low energy range (up to
several hundred keV)

e Electromagnetic radiation is absorbed by a bound
electron, causing It to become excited and break
free of the atom

e The energy of the ejected electron Is thus

E=hv-B.E.

e In a detector, materials with higher Z are favored
for this effect

e Cross-section dependence goes as ~ Z°

4



Compton Scattering

e Dominant effect in the energy range of
about 1 to 5 MeV

e Gamma ray collides inelastically with an
electron and scatters, losing a significant
amount of energy In the process.

e Dependence on the material goes linearly
as ~~



Pair Production

e Dominant in the high energy range above
5-10MeV

e Photon Is transformed into an electron-
positron pair.

e Minimum energy required is ~1.02 MeV (at
least the total rest mass energy of the two
particles)

e Cross Section varies approximately as (Z2)



Interaction Summary
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Photon Interaction with a Detector

Double escape peak from the
two annihilation photons which
do not further interact in the
detector

Single escape peak from the

escape of one annihilation
Single

phOton Double escape

e other is totally absorbed a5 escape

peak
e appears ~0.511 MeV below
the photopeak

Sharp full-energy peak from P WP o
photoelectric interaction Multiple

Lompton

Compton continuum where
multiple events occur




Gamma Ray Detectors

e Semiconductor Detectors — Germanium

e Excellent energy resolution (~FWHM of a
couple keV)

e Smaller cross sectional area translates into
reduced efficiency

e Nal
e Poor energy resolution in comparison to Ge

e Excellent light yield allows for greater
efficiency



Germanium Detectors

Free

Electrons o Electromagnetic radiation
allows electron in valence
band to jump the energy
gap into the conduction
band

e Resolution allows for the

Fobidden Energy [Gap separation of many

closely spaced gamma-

ray energies which

remain unresolved in Nal

e Few tenths of a percent
(compared to 5-10% for
Nal)

e But smaller size and
lower Z give an order of
magnitude less efficiency,
than Nal




My Project

e Derive an analytical expression for the efficiency
of Ge detectors

e Four sources used to calibrate:
6OCO, 137CS, 152Eu’ 56CO

%6Co is the only source that supplies high energy gammas (
>3 MeV).

e Determine an estimate of the activity of *°Co

e This experiment, performed at GANIL laboratory
In France, was motivated by fundamental
guestions in nuclear physics and astrophysics
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Experimental Details

e Breakup mechanics of loosely bound nuclei
e 23A]- 22Mg + p*

after
Particle detector

P

\ &

Gamma detector




An illustration of the experimental
setup at GANIL. The beam enters
from the left where it interacts with

the target surrounded by 8 Ge and
Owardg

IS PEG 12 Nal detectors.

» Each of the 8 Ge clovers used in the setup is segmented
into 4 crystals (A, B, C, D) and segmented again into
parts (1, 2, 3, 4).

« Segmentation provides for careful consideration of
Doppler corrections such as energy shifting and energy
broadening.




Standard Gamma Calibration
Sources

e Sources with well
known emission
spectra:

e 60Co (1137keV,
1332keV)

e 137Cs (662 keV)
e 152Eu (up to 1.5 MeV)
e 56Co (up to 3MeV)

I"”N l stable
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Energy Calibration

e In order to convert the
electric signal of the
detector (channel #)to &
energy (keV), an energy
calibration must be —
performed e —

e Use RADWARE to
measure the centroids
and areas of each peak

e Plot centroids vs. known
energies to find linear
relation and analytical
expression
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The Task

e Using RADWARE Software, analyze gamma
spectra

e After performing the energy calibration, re-fit the
peaks to calculate the corrected energies and
the areas underneath each curve.



Efficiency

e Must know activity of each source at the
time of the experiment

e Efficiency of the detector Is dependent on
the energy of each gamma ray

e Equations for Activity and Efficiency:

N (E
e, )= o

A, *At b,



Activities a b

® GOCO (11'12 MeV, Efficiency Calibration 0_A y=0.0548x'°'6488
Bq) R? =0.9948
e 137Cs (0.6 MeV,
Bq)
e 152Eu (121 keV-1.5 |§
MeV, Bq)
¢ 96¢00.8-3.6 s
MeV, unknown - —_—
activity). e EXOGANM elovere, Without 56Co S

cannot extrapolate the analytical expression
for the efficiency beyond 2 MeV.
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Finding Coefficients

e Approximate analytical efficiency expression y = ax’ as
In(y)= In(a)+bln(x) by using a Taylor expansion

| _ O, o o
In(y £0,) = In(y(1£—2)) = In(y) +In(l £
_,.-]-’"? }}

| o, O
) In(l£—) =

e Find a and b coefficients manually
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Procedure

e Determine analytical expressions of the efficiency for
each of the 32 crystals

e Apply those analytical expressions to the low y-ray
energies of 56Co:
e energies: 846.76 keV, 1238.27 keV, and 1771.32keV

e Manipulate efficiency equation and solve for activity
e Calculate the activity of °°Co using the low energies

1. 2. 3.

<A>=20238
TUN(E,) 20405 + 107

RO iaywrenll 20604 + 157
" 20994 + 311
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y = 0.0687x

-0.6823

R?* = 0.996

3000

3500

The total efficiency
calibration for the
whole energy range of
interest (up to 3 MeV)

of an EXOGAM
clover.

The same work was
done for each of the
32 crystals of the
EXOGAM setup.
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Motivation for Experiment

e Astrophysics

e No evidence so far for the
expected 1.25MeV gamma
ray following the decay of
22Na

e What is the reaction rate
for 22Mg(p,y)23Al?

e Nuclear Physics

e The nuclear structure of
23A] is not precisely known

e Is mirror symmetry with
23Ne broken?




Motivation, continued

e Understanding the Nuclear
Force
e how is the outer-most proton
on the liquid drop line bound to
the rest of the nucleus?

e Chinese physicists observed a
very large cross sectional area
for 23Al, similar to large oy of the
known halo nucleus "Li

e Is23Al a halo nucleus? : N=10 isotone

9 10 11 12 13 14

Regular Halo
Nucleus Nucleus



Nuclear Shell Structure
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Shell Structure of 23Al Nucelus
=3

The energy levels increase
with increasing orbital quantum
number, .

e The value of | determines the

orbital = s, p, d, f... also like
the atomic case

e | =0, s shell

o | =1, pshell

e | =2, dshell

O ..s
Spin#j=1lzxs

e (always positive)
The number of nucleons
allowed in a shell depends on
the value j, which is a
combination of | and the
Intrinsic spin, s.

e #nucleons in ashell=2j+1
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Ground State Spin

/
X X X X 20T
/
o0 -
XXX s
®e S 12

Shell Structure of 23A1 Nucelus
=3

e Ground state spin is
given the j value of the

particular shell where last

bound nucleon sits.

e Previous experiments
showed g.s. spin of 5/2

e Chinese showed it was
possible for the spin to be
Y2,

¢ Evidence for halo nucleus

e How do we figure out
which one it really is?

e In a slightly round about
way...Gamma rays!
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Configuration Mixing

e Total spin can result from a combination of the wave
functions

e 22Mg is an even-even nucleus (same numbers of protons
and neutrons

e even-even nuclei have possible j= o*, 2+, 4*..

e Exact value j can be determined by the energies of detected
gammas emitted from excited states in 22Mg core

e Once jis known, then by the conservation of momentum,
total spin must be conserved in the reaction
e 23A]-> 22Mg + p*
5/2> #(y) + ?

e (O, ) or (2, '/2)
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What the spin tells us

e Spin Y2 indicates a s
orbital

e Large, spread out wave
function

e Narrow, very sharp
momentum distribution
e Spin 5/2 indicates d
orbital

e Smaller, more
contracted wave function

e Wider, more flat
momentum distribution
e \Wider wave function
provides evidence for a
halo nucleus

Potential
Energy

=0, s wave

e |®

Distance from Center --=

2084172, 1g)
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C o w >

a (bev)
0.0520
0.0560
0.0517

0.0580

o_a
(bev)

0.04741
0.04712
0.04695
0.04796

b (bev)
-0.6343
-0.6438
-0.6307
-0.6571

o b
(bev)

0.00706
0.00702

0.00699

0.007155 0.02305

a (reg)
0.0520
0.0571
0.0509
0.0568

o _a
)]

0.097218
0.019463

0.020979

b (reg)
-0.6348
-0.6478
-0.6292
-0.6546

o Db
(reg)

0.01422
0.01565
0.01687
0.01854

A

=]

C

D

) S
(Bev)

14.9624

19.9640

17.411

23.1725

Compare Results

Unc
5.4736
6.1388
5.0011

6.8007

X2
(Reg)

16.1893

24.6083

18.6705

25.0205

Unc
5.6902
7.0154

19.5050

7-0739
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