Gamma Detection Efficiency of a State-of-the-Art Ge Detector

Erika Navarro Wellesley College Carl A. Gagliardi, Adriana Banu Cyclotron Institute

Talk Outline

- Photon Interaction with Matter
- Gamma Ray Detection
 - Semiconductor Detectors
- My Project
- Results

Photon Interaction with Matter

- Photons are neutral particles which cannot be detected on their own
- Detection arises from an interaction with matter, such as an electron.
- Three main photon interactions:
 - Photoelectric Effect
 - Compton Scattering
 - Pair Production

Photoelectric Effect

- The dominant effect in low energy range (up to several hundred keV)
- Electromagnetic radiation is absorbed by a bound electron, causing it to become excited and break free of the atom
- The energy of the ejected electron is thus

$$E = h \nu - B.E.$$

- In a detector, materials with higher Z are favored for this effect
 - Cross-section dependence goes as ~ Z⁵

Compton Scattering

- Dominant effect in the energy range of about 1 to 5 MeV
- Gamma ray collides inelastically with an electron and scatters, losing a significant amount of energy in the process.
- Dependence on the material goes linearly as ~Z

Pair Production

- Dominant in the high energy range above 5-10MeV
- Photon is transformed into an electronpositron pair.
 - Minimum energy required is ~1.02 MeV (at least the total rest mass energy of the two particles)
- Cross Section varies approximately as (Z²)

Interaction Summary

Photon Interaction with a Detector

- Double escape peak from the two annihilation photons which do not further interact in the detector
- Single escape peak from the escape of one annihilation photon
 - other is totally absorbed
 - appears ~0.511 MeV below the photopeak
- Sharp full-energy peak from photoelectric interaction
- Compton continuum where multiple events occur

Gamma Ray Detectors

- Semiconductor Detectors Germanium
 - Excellent energy resolution (~FWHM of a couple keV)
 - Smaller cross sectional area translates into reduced efficiency
- Nal
 - Poor energy resolution in comparison to Ge
 - Excellent light yield allows for greater efficiency

Germanium Detectors

Free Electrons

- Electromagnetic radiation allows electron in valence band to jump the energy gap into the conduction band
- Resolution allows for the separation of many closely spaced gammaray energies which remain unresolved in Nal
 - Few tenths of a percent (compared to 5-10% for Nal)
- But smaller size and lower Z give an order of magnitude less efficiency, than Nal

My Project

- Derive an analytical expression for the efficiency of Ge detectors
 - Four sources used to calibrate:
 - 60Co, 137Cs, 152Eu, 56Co
 - ⁵⁶Co is the only source that supplies high energy gammas (
 >3 MeV).
- Determine an estimate of the activity of 56Co
- This experiment, performed at GANIL laboratory in France, was motivated by fundamental questions in nuclear physics and astrophysics

Experimental Details

Setup

An illustration of the experimental setup at GANIL. The beam enters from the left where it interacts with the target surrounded by 8 Ge and 12 Nal detectors.

- Each of the 8 Ge clovers used in the setup is segmented into 4 crystals (A, B, C, D) and segmented again into parts (1, 2, 3, 4).
- Segmentation provides for careful consideration of Doppler corrections such as energy shifting and energy broadening.

Standard Gamma Calibration Sources

- Sources with well known emission spectra:
 - 60Co (1137keV, 1332keV)
 - 137Cs (662 keV)
 - 152Eu (up to 1.5 MeV)
 - 56Co (up to 3MeV)

Energy Calibration

- In order to convert the electric signal of the detector (channel #) to energy (keV), an energy calibration must be performed
- Use RADWARE to measure the centroids and areas of each peak
- Plot centroids vs. known energies to find linear relation and analytical expression

The Task

 Using RADWARE Software, analyze gamma spectra

 After performing the energy calibration, re-fit the peaks to calculate the corrected energies and the areas underneath each curve.

Efficiency

- Must know activity of each source at the time of the experiment
- Efficiency of the detector is dependent on the energy of each gamma ray
- Equations for Activity and Efficiency:

$$A(t) = A_0 e^{-\lambda t}$$

$$\varepsilon_{ph}(E_{\gamma}) = \frac{N(E_{\gamma})}{A_o * \Delta t' * b_{\gamma}}$$

Activities

- 60Co (1.1-1.2 MeV,
 13988 Bq)
- 137Cs (0.6 MeV,
 34825 Bq)
- 152Eu (121 keV-1.5
 MeV, 23209 Bq)
- 56Co (0.8 3.6 MeV, unknown activity).

Above: An efficiency calibration for one of the EXOGAM clovers. *Without 56Co we cannot extrapolate the analytical expression for the efficiency beyond 2 MeV.*

Finding Coefficients

• Approximate analytical efficiency expression $y = ax^b$ as ln(y) = ln(a) + bln(x) by using a Taylor expansion

$$\ln(y \pm \sigma_y) = \ln(y(1 \pm \frac{\sigma_y}{y})) = \ln(y) + \ln(1 \pm \frac{\sigma_y}{y}) \rightarrow \ln(1 \pm \frac{\sigma_y}{y}) = \frac{\sigma_y}{y} = \sigma_i$$

• Find a and b coefficients manually

$$a = \frac{1}{\Delta} \left(\sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \sum \frac{y_{i}}{\sigma_{i}^{2}} - \sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{x_{i}y_{i}}{\sigma_{i}^{2}} \right)$$

$$b = \frac{1}{\Delta} \left(\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}y_{i}}{\sigma_{i}^{2}} - \sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{y_{i}}{\sigma_{i}^{2}} \right)$$

$$\Delta = \sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \left(\sum \frac{x_{i}}{\sigma_{i}^{2}} \right)^{2}$$

$$\Delta = \sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \left(\sum \frac{x_{i}}{\sigma_{i}^{2}} \right)^{2}$$

$$\begin{pmatrix} \sigma_{a}^{2} & \sigma_{ab}^{2} \\ \sigma_{ab}^{2} & \sigma_{b}^{2} \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \sum \frac{x_{i}}{\sigma_{i}^{2}} \\ -\sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{1}{\sigma_{i}^{2}} \end{pmatrix}$$

Procedure

- Determine analytical expressions of the efficiency for each of the 32 crystals
- Apply those analytical expressions to the low γ -ray energies of 56Co:
 - energies: 846.76 keV, 1238.27 keV, and 1771.32keV
- Manipulate efficiency equation and solve for activity
- Calculate the activity of ⁵⁶Co using the low energies

1.

$$Activity = \frac{N(E_{\gamma})}{\varepsilon * \Delta t' * b_{\gamma}}$$

2.

$$20405 \pm 107$$

$$20604 \pm 157$$

$$20994 \pm 311$$

 $<\bar{A}> = 20238 \pm 16$ Bq

$$\overline{A} = \frac{\frac{A_1}{\sigma_{A_1}^2} + \frac{A_2}{\sigma_{A_2}^2} + \dots \frac{A_n}{\sigma_{A_n}^2}}{\frac{1}{\sigma_{A_1}^2} + \frac{1}{\sigma_{A_2}^2} + \dots \frac{1}{\sigma_{A_n}^2}}$$

Results

- The total efficiency calibration for the whole energy range of interest (up to 3 MeV) of an EXOGAM clover.
- The same work was done for each of the 32 crystals of the EXOGAM setup.

Acknowledgements

- Special thanks to Dr. Carl A. Gagliardi and Dr. Adriana Banu for their guidance and support during the project.
- Also thank you to Dr. Livius Trache, Ellen Simmons, and Alexandra Spiridon for their advice and aid during the summer.

Backup Slides

Motivation for Experiment

1/2+

5/2+

Astrophysics

- No evidence so far for the expected 1.25MeV gamma ray following the decay of ²²Na
- What is the reaction rate for ²²Mg(p,γ)²³Al?
- Nuclear Physics
 - The nuclear structure of
 ²³Al is not precisely known
 - Is mirror symmetry with ²³Ne broken?

Motivation, continued

- Understanding the Nuclear Force
 - how is the outer-most proton on the liquid drop line bound to the rest of the nucleus?
- Chinese physicists observed a very large cross sectional area for 23 Al, similar to large σ_R of the known halo nucleus 11 Li
 - Is ²³Al a halo nucleus?

Nuclear Shell Structure

Shell Structure of ²³Al Nucelus

 $S^{1/2}$

- The energy levels increase with increasing orbital quantum number, I.
 - The value of I determines the orbital → s, p, d, f... also like the atomic case
 - I = 0, s shell
 - I = 1, p shell
 - I = 2, d shell
 - •
- Spin $\# j = I \pm s$
 - (always positive)
- The number of nucleons allowed in a shell depends on the value j, which is a combination of I and the intrinsic spin, s.
 - # nucleons in a shell= 2j+1

Ground State Spin

Z = 13

- Ground state spin is given the j value of the particular shell where last bound nucleon sits.
- Previous experiments showed g.s. spin of 5/2
 - Chinese showed it was possible for the spin to be
 ½,
 - Evidence for halo nucleus
- How do we figure out which one it really is?
 - In a slightly round about way...Gamma rays!

Configuration Mixing

- Total spin can result from a combination of the wave functions
- ²²Mg is an even-even nucleus (same numbers of protons and neutrons
 - even-even nuclei have possible j= 0+, 2+, 4+...
 - Exact value j can be determined by the energies of detected gammas emitted from excited states in ²²Mg core
- Once j is known, then by the conservation of momentum, total spin must be conserved in the reaction
 - $^{23}\text{Al} \rightarrow ^{22}\text{Mg} + p^+$ $5/2 \rightarrow \#(\gamma) + ?$
 - (0, 5/2) or $(2, \frac{1}{2})$

What the spin tells us

- Spin ½ indicates a s orbital
 - Large, spread out wave function
 - Narrow, very sharp momentum distribution
- Spin 5/2 indicates d orbital
 - Smaller, more contracted wave function
 - Wider, more flat momentum distribution
- Wider wave function provides evidence for a halo nucleus

Compare Results

	a (bev)	b (bev)	a (reg)	b (reg)		X^2 (Bev)	Unc	X^2 (Reg)	Unc
A	0.0520	-0.6343	0.0520	-0.6348	A	14.9624	5.4736	16.1893	5.6902
В	0.0560	-0.6438	0.0571	-0.6478	В	19.9640	6.1388	24.6083	7.0154
C	0.0517	-0.6307	0.0509	-0.6292	C	17.411	5.0911	18.6705	19.5050
D	0.0580	-0.6571	0.0568	-0.6546	D	23.1725	6.8007	25.0205	7.0739
	σ_a (bev)	σ_b (bev)	σ_a (reg)	σ_b (reg)			,		, , 0)
A	0.04741	0.00706	0.097218	0.01422					
В	0.04712	0.00702	0.019463	0.01565					
C	0.04695	0.00699	0.020979	0.01687					
D	0.04796	0.007155	0.02305	0.01854					